Inhibition of PAI-1 Via PAI-039 Improves Dermal Wound Closure in Diabetes.

نویسندگان

  • Irena A Rebalka
  • Matthew J Raleigh
  • Donna M D'Souza
  • Samantha K Coleman
  • Alexandra N Rebalka
  • Thomas J Hawke
چکیده

Diabetes impairs the ability to heal cutaneous wounds, leading to hospitalization, amputations, and death. Patients with diabetes experience elevated levels of plasminogen activator inhibitor 1 (PAI-1), regardless of their glycemic control. It has been demonstrated that PAI-1-deficient mice exhibit improved cutaneous wound healing, and that PAI-1 inhibition improves skeletal muscle repair in mice with type 1 diabetes mellitus, leading us to hypothesize that pharmacologically mediated reductions in PAI-1 using PAI-039 would normalize cutaneous wound healing in streptozotocin (STZ)-induced diabetic (STZ-diabetic) mice. To simulate the human condition of variations in wound care, wounds were aggravated or minimally handled postinjury. Following cutaneous injury, PAI-039 was orally administered twice daily for 10 days. Compared with nondiabetic mice, wounds in STZ-diabetic mice healed more slowly. Wound site aggravation exacerbated this deficit. PAI-1 inhibition had no effect on dermal collagen levels or wound bed size. PAI-039 treatment failed to improve angiogenesis in the wounds of STZ-diabetic mice and blunted angiogenesis in the wounds of nondiabetic mice. Importantly, PAI-039 treatment significantly improved epidermal cellular migration and wound re-epithelialization compared with vehicle-treated STZ-diabetic mice. These findings support the use of PAI-039 as a novel therapeutic agent to improve diabetic wound closure and demonstrate the primary mechanism of its action to be related to epidermal closure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of inactivation of plasminogen activator inhibitor-1 by a small molecule inhibitor.

The inactivation of plasminogen activator inhibitor-1 (PAI-1) by the small molecule PAI-1 inhibitor PAI-039 (tiplaxtinin) has been investigated using enzymatic analysis, direct binding studies, site-directed mutagenesis, and molecular modeling studies. Previously PAI-039 has been shown to exhibit in vivo activity in various animal models, but the mechanism of inhibition is unknown. PAI-039 boun...

متن کامل

Inhibition of Plasminogen Activator Inhibitor-1 Restores Skeletal Muscle Regeneration in Untreated Type 1 Diabetic Mice

OBJECTIVE Type 1 diabetes leads to impairments in growth, function, and regenerative capacity of skeletal muscle; however, the underlying mechanisms have not been clearly defined. RESEARCH DESIGN AND METHODS With the use of Ins2(WT/C96Y) mice (model of adolescent-onset type 1 diabetes), muscle regeneration was characterized in terms of muscle mass, myofiber size (cross-sectional area), and pr...

متن کامل

Pharmacological inhibition and genetic deficiency of plasminogen activator inhibitor-1 attenuates angiotensin II/salt-induced aortic remodeling.

OBJECTIVE To test the hypothesis that pharmacological plasminogen activator inhibitor (PAI)-1 inhibition protects against renin-angiotensin-aldosterone system-induced cardiovascular injury, the effect of a novel orally active small-molecule PAI-1 inhibitor, PAI-039, was examined in a mouse model of angiotensin (Ang) II-induced vascular remodeling and cardiac fibrosis. METHODS AND RESULTS Unin...

متن کامل

Modulation of adipose tissue development by pharmacological inhibition of PAI-1.

OBJECTIVE The effect of a novel small molecule plasminogen activator inhibitor (PAI-1) inhibitor on adipose tissue physiology was investigated. METHODS AND RESULTS In human preadipocyte cultures, PAI-039 inhibited both basal and glucose-stimulated increases in active PAI-1 antigen, yet had no effect on PAI-1 mRNA, suggesting a direct inactivation of PAI-1. Differentiation of human preadipocyt...

متن کامل

Plasminogen Activator Inhibitor-1 Controls Vascular Integrity by Regulating VE-Cadherin Trafficking

BACKGROUND Plasminogen activator inhibitor-1 (PAI-1), a serine protease inhibitor, is expressed and secreted by endothelial cells. Patients with PAI-1 deficiency show a mild to moderate bleeding diathesis, which has been exclusively ascribed to the function of PAI-1 in down-regulating fibrinolysis. We tested the hypothesis that PAI-1 function plays a direct role in controlling vascular integrit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 64 7  شماره 

صفحات  -

تاریخ انتشار 2015